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This paper discusses the recursive (on lin N Of parameters

in regression and autoregressive integrated moving average (ARIMA) time series

models. The approach which is adopted uses Kalman filtering techniques to
calculate estimates.recursively. This approach can be used for the case of
constant as well as time varying parameters.

In the first section the linear regression model is considered and recur-
sive estimates of the parameters, both for constant and time varying parameters,
are discussed. Since the stochastic model for the parameters over time will be
rarely known, simplifying assumptions have to be made. In particular a random
walk asa model for time varying parameters is assumed and it is shown how one can
determine whether the parameters are constant or changing over time.

In the second section the recursive estimation of parameters in ARIMA
models is considered. If moving average terms are present, the model has to be
linearized and the Extended Kalman Filter can be used to recursively update

the parameter estimates. The first order mov1ng average model is discussed

in detail. B Tl ¥
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SIGNIFICANCE AND EXPLANATION

The problem discussed in this paper is the following: Observations
up to time n (of, for example, business data or missile positions) are
available and one wants to estimate unknown parameters in regression or
autoregressive integrated moving average models in order to predict futLre
values.

An additional observation is recorded. The question becomes how to
update the parameter estimates from the previous estimates and the most recent
observation without storing the complete past history of the data. The
answer to this question will depend on whether the parameters in these models
are assumed constant or whether they themselves follow a given stochastic
process.

This recursive estimation procedure (which is sometimes called on-line
estimation or parameter tracking) is important if the observations become
available sequentially in time. It has applications in economics and
business, where economic indicators and sales data are updated every week,
month or quarter; it can also be applied to the control of satellites or

ballistic missiles where the position in space is recorded every few seconds.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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A RECURSIVE APPROACH TO PARAMETER ESTIMATION IN REGRESSTON
AND TIME SERIES MODELS+

Johannes Ledolter

z. = h'B. + a (5 S5

where: z, is the dependent variable at time ¢t

bt = (hlt.-..,hmt) is a set of m independent variables at time t

3 ¢ 2 2
(dt} is a sequence of independent normal random variables N(0,0").
Standard regression procedures assume that the parameters are constant over time

(@t = g for all t). 1In this case the least squares (maximum likelihood) estimates

of f, given all the data up to and including time n, are

0 -1 .
2 (H(n) “(n)) H(n) E(n)

where

(n) _ v
z = (21'22""'2n)

H(n)

0 TP A

A recursive version of least squares estimates in regression models was first
given by Plackett [B]. He proves that the parameter estimates at time n are linear
combinations of the estimates at time n - 1 and the prediction error z - b;én-l'

Plackett's solution can be shown to be a special case of a more general procedure
which, in the engineering literature, is known under the name of Kalman filtering

(Kalman [4]), Kalman and Bucy ([5]). 1In the following section (51.2) we given a brief

review of this approach. A similar discussion is given by Duncan and Horn (2].

f
Paper presented at the IMS Special Topics Meeting on Time Series Analysis,
Ames, Iowa, May 1-3, 1978.

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024 and the
National Science Foundation under Grant No. MCS75~17385 AOl.
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§1.2: We consider the regression model in (1.1)

z_ = h'B é 12
2 r-ft{t & B3, ( )

with parameters which change according to a multiple (m-dimensional) autoregressive model

gt*l = 1ﬁt + €t+l (1.3)

{ﬁt} 1s a sequence of independent normal random variables Nm(O,uzn). Furthermore

it 15 assumed that ft and dt are independent; Eatft =0

Assuming that § , the initial parameter vector at time 0, follows a normal

0
distribution with expectation @0|0 and covariance matrix nzvo 0’ it is easily
shown that:
g P P h
G e B )e~n o Ejt- tlt-1-t
p(B .z |z P T S e R R "0 (1.4)
Bes@s |2 “olo" olo mil) g pip L+h'P h
“toe| e~ “totlt-1 Tt t|t-17t
and
(£ (E)e2 - . 2
, 3 P o 3 0P . .5
pB |z o ATeB010:Pol0) T MalBe|er® Peie) (1.5)
It follows from properties of the normal distribution that
: =i % B TR 1.6
Bele ™ Befe-n * %e1™e ™ Befolenn! L
> = P - h'p . 1.6b
Pele tlt-1 " Fe-1% e e k :
-1
=P ht + h'pP 1.6
Ke-1 tlt-1~c(l e tlt-lbc) Getic)

is called Kalman gain. Furthermore it follows from (1.4) that

p”3:;-',1‘?“;)'"(“'Oz'n'T’(}olo’polo) i3 Nm(ét+llt'02pt41|t)
where
@t*llt & T@c - 1580
Pesrfe ™ Tpt'tT' + Q. (1.6e)

Equations (l.6a)-(l1.6e) can be used to calculate the parameter estimates recursively

as each new observation becomes available in time. and P are starting values

golo olo

for the recursive estimation procedure in equations (1.6). To reflect ignorance about the

-2=
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parameters at time zero (before observations become available), the matrix POIO

is usually chosen diagonal with large values in its diagonal. If n is moderately
large, the initial choice of e0|0 will be dominated by the information from the data.

§1.3: For the case T =1 and @ = 0 the above procedure specializes to the recursive

least squares algorithm discussed by Plackett (g].

; : -1 ;
3 = g 4P 3 - i il
(th ft~1|t-l AR t-l|t-lf~'t) ‘t-llt-lht(zt k}tﬁt-l|t-lj Lol

and

P )

'p It T -
(L + ht t-l‘t-l)t (1.7b)

tlt = Pe-1)e-1 pt-llt-lhthépt-llt-l
§1.4: Equation (1.3) specifies an autoreqressive process as model for the time varying
parameters. This, however, is not a serious restriction since by the introduction
of additional state variables any autoregressive integrated moving average (ARIMA)

process can be brought into this form.
By substitution it can be shown that the regression model (1.2) in which the

parameters E‘ follow a multiple ARIMA process

]) q
- -~ ++s =& B 4 = -6 - see = 0O
(1 ¢1rs o )?_U (1 lB qB )et (1.8)

1 +1

where I is the identity matrix and ®l,...,®[,ﬁl,...,ﬂ are known [m x m] matrices,
7 l{

can be written as:

r - r e [ 1
LI L O Se41
* * *
€
Baes1 ¢ 1 Yxeaym||2e 2t41
. - S (1.9)
»* " 0- 5 * *
ae s €
Bresr]  [% e [fxes]
and
Be
*
PYS
o [B50° «.r 0°11. .10
z, = (b0 0'1. | +a, (1.10)
*
By
—3—
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k = max{p,q + l}; ¢j =0 for 4 > p; 9j 5.0 for 4 >ig; is the (k - 1l)m

r(k~l)m

identity matrix; €

= -0 ¥ &
£ ini j-l€t+1 for 2 < 3 sk,

The recursive procedures given in (1.6) can be applied to the system described
by equations (1.9) and (1.10).
§1.5: The model in equation (1.4) assumes that the parameters @t vary around the
origin. In general, however, parameters will vary around a level B which will be
different from zero.

Redefining the matrix T will, however, allow for é #+ 0:

g T =T I
r~t*1 ~t
= + € {1.11)
= = ~t+1
3 0 1
b B, 2
Be
- L] ’ + . .
2, [th 1 : a, (1.12)
i =
51.6: A random walk model for the parameters
The recursive estimation procedures in equations (1.6) are very general.
Theoretically, they can be used to update regression estimates for any given ARIMA
model for the parameters.
In practice, however, the model for the parameters is rarely known and simplify-
ing assumptions about this model have to be made. A particularly useful and simple
model for time varying parameters is the random walk model,
B =B + € 1.13
~t+l ~% ~t+l ( :

which equivalently can be written as

t
Beaz =8y * .Z Se41-5

3=0
It represents the parameter at time t + 1 as a sum of the parameter at time O and
a cumulative sum of independent random variables. The random walk model allows for
smooth changes in the parameters. The variability of the parameters depends on the

i i 2 A
covariance matrix Egtgé =00, If Q=0 the parameters are constant over time.




Using the observations up to and including time n, we address the question
whether the parameters in the regression model (1.2) can be considered constant, or
whether there is indication of time changing parameters (& # 0 in the random walk
model) .

Setting T = I, it follows from equation (1.4):

(t-1) (t) 2, - ' i
plz |z 0% BB o) T NOB 5 07D
where
= 'p
g htrtlt-lbt
Furthermore,
(77 3 Az, (%) =22
plz)oeeez [HT0,0%, 02080 140Pg 1 0) = P(2)[HT 007,008y 0Py )
- (t-1) (t) 2
x |_ plz, |2z V1 T ’“'@olo'Pola)
t=2
1 l
2 va 2
n n (z, - h'B ! )
-n -~ -
« g T—T ft exp{ - *li- z = : e .
t=1 2g t=1 :

and can be treated as parameters. However, if there is little prior

[folo olo

information about 8 the matrix in the recursions (1.6) can be chosen

0’ Polo

diagonal with large entries in its diagonal; for the initial §0|0

zero vector.

The log likelihood function of the parameters 02 and Q 1is given by

(1.14)

(1 .25)

one can choose the

n o (= - h'é )2
t02,0/2" 1)« - n 1og o - % [ 1oge, -1 | —H—o0 tle-1 (1.16)
t=1 20 t=1 L
The ML estimate of 02 is given by
2 2
n (2= h'g )
2. % ] = : e~ (1.17)
t=1 t
and the concentrated likelihood
n
lc(ﬁlg(n),u(n))c -nlog g - %’ Z log £ . (1.18)
t=1
-5-
o s Sli— 5 o
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Nonlinear optimization techniques can be used to derive the ML estimate of the 1
covariance matrix (. Approximate (] - @)100 percent confidence limits for the :
k(k + 1) ; ; 1
s elements in { are given by the contours of

o aer (oY _in) . patn) i) e -

146(“12 BT - L Rl ) 23 /kiﬁfll(d) |

2
2 . 2 :
where 1f(1) is the upper a percent cut off value of a distribution with f

degrees of freedom.

§1.7: An example

We consider the model

=R + = 1
z, Be at V(at) 5} {1.09a)
g = B + e Vi ) = ku2 k®0 . (1.19b)
t+l t t+l £ -
(i) The updating relations (1.6) simplify to
- " _l ~
R = P + P + =8 .20
fele ® Pesteet T Foalpsn TR IR gy Y RBE S8 ) AR
P + k P + k # ) .20b
el T Peop]e-n hes t-1|t~1 ) e :
and the concentrated log likelihood function in (1.18) 25 M
n
2 1
t x| ye = ntog e~ % | dog e (121
c 2 = t
t=1 .
where
+ 4+ 1 1
£ t-1]e-1 T ¥
and
2
2.1 ; e~ Peaajet)
+ +
Boont Peetjea TR 2D

The log likelihood function can be calculated and plotted for various k. The maximum

likelihood estimate k can be found and approximate (1 - a)l00% confidence limits

are given by the solution to

(n))l

le k]2™) - ¢ x|z « 2yl . (1.22)
¢ c |

2
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"
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(ii) The model in (1.19) can equivalently be represented as integrated first order

moving average process (Muth [7])

= -6 1.23
B A P S m G ihetd!
where
1
B == [(2+k) - +Vdk + k"], 6 >0
2 202
cg = >
(2 + k) - /Zk + k

This equivalent representation can be used as check whether the model in equations

(1.19) is justified by the data.




2. Recursive estimation of parameters in ARIMA time series models

5 -

52.1: BAutoregressive integrated moving average (ARIMA) time series models are described
by the stochastic difference equation

q

P =
- B - ««s = ¢ B 7 - = = B B = so+ = 8 Bz (549
(1 @11 by )(At u) {1 1 ,q )dt (2.1)
where: B 1is the backshift operator; Bz = z
1 t-m
d
z, is a stationary difference of the original observations, z, = {1 - B) %,
the roots of ¢(B) =1 - ¢ B~ --- - @I“B“ oY ana
o =) IR A8 I - D - L T OQBq = 0 are assumed outside the unit circle;
furthermore ¢(B) = 0 and 6(B) = 0 have no common roots.

; ; 2 ;
(ati is a sequence of independent N(0,0”) random variables.
L . (n) h : ) y
52.2: Given observations 2z = (21,22,...,2 ', maximum likelihood estimates for
ZALL w n

I’b ’ 6

the parameters @' = (g,@l,... - 10t

Oq) can be derived. Box and Jenkins [1],
Ljung and Box (6] discuss the derivation of the exact likelihood function of the
parameters for this class of models. In general, the exact likelihood function is non-
linear in the parameters and iterative maximization techniques have to be used for
the derivation of the ML estimates. Ljung and Box [6] propose a general method for
the calculation of the likelihood function.

For pure autoregressive processes the derivation can be simplified.
The ML estimates of ¢ = (@l,¢2,...,®p)' can be approximated by the least squares

estimates.

|

2.3: ML estimates for the parameters in ARIMA models are nonrecursive in nature.
If data is collected sequentially (such as quarterly or monthly economic data, sales
data, hourly pollutant measurements) one would, however, prefer recursive estimation
procedures which update the values of the parameters as each new observation becomes
available.

Updating (tracking) the parameters should not be confused with updating the fore-
casts as discussed by Box and Jenkins [1, Chapter 5]. Updating of the forecasts

assumes constant parameters and calculates the revised forecast as each new observation

is made available. Tracking the parameters updates the parameter estimates. -

~B-
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52.4: Linearization of the model

The ARIMA model in (2.1) is nonlinear in the parameters. To derive recursive

estimates the model has to be linearized. This can be achieved by expanding the ARIMA

model

zo=u+ I om0z, -w+a,
j>1
where the “j weights in (2.2) are given by the coefficients in

j _ 9(B)
wiE) = k= ] 2B =
i51 3 (B)

in a Taylor series around some reference value § = (;,5,6)'.

Define
e ) s u e § one -
e
then,
2, ~ £B,z'%Y) + w-Bu B + § (b, -b v, (B) + ? (6,-6.)w, (B) + a
t * t - . IR G 7 : Gl P e
i=1 j=1
where
3 4a (t-1)
u (?) by f(Biz ),526
T = (t-1) 2 )
el =g fhe ) oy el ol
PR SRR L 2
e B " &, £(8;z2 )I§=§ ed<a .
z, - f(?;z(t-l)) = at(é) is the one step ahead forecast error for the ARIMA model

with parameters E.
It can be easily shown that

WA = e gy e N~y e = B

1 q
(1-¢B~---38P)v, (B) =a .(B)
1 P b e t-i <

-G B vse » G B B) = - B
(1 els qu )wjt(g) at_j(ﬁ) .

-Q=

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

P R

> oo

.
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Using this expansion the general ARIMA model (2.1) with time varying coefficients

f = TR o€ H ¢ e' = g°f 2.8
= | [‘r tel ' £t ¢ !
can be expanded around the trajectory Et‘l Tﬁ' and represented as
= =1} = (t=1) -
2. = LB 1z 2 h'(Bysi& 8. = B h 2
z, ([! 2 ) h ([t P )([r f') e
; - B = T(B, - B} + e ] 2.9
' (’t4l ttl) l({t [') | ( )
The elements in h(f ,Z(L_l)) = (U _,V, sec-pV MW ,...,Ww_ )" are given by the
t E Lt P Lt qt

expressions in (2.7) with @ replaced by Ut
Summarizing, it is shown that the nonlinear ARIMA model with time varying para-
meters (the special case of constant parameters is given when T = I and § = 0) can

be linearized and approximated as in (2.9). (2.9) is linear in the measurement devia-

= &=l . ) e =
tions 2, = f(ﬁr;z )) and in the trajectory (state) deviations ﬁt - ﬁt.
Given a trajectory Et and observations g(t), one can calcuiate the measurement
ik = (=] ; 3 A ;
deviations 2 = f(@t:g ) and use the Kalman filter equations in (1.6} to derive

A -
an estimate (dﬁ)tlt for the deviations from the trajectory (d{',)t = GL - ﬂt. The

- = A
estimate for f is then given t = + (dg .
Be 9 ¥ Bele ™ B (([)tlt

An obvious choice for the reference trajectory is 60 = EO' where EO is the

prior estimate of the parameter vector f. However, if our prior estimate is poor,

the state deviations Bt ~ ﬁt can become large and the linearity assumption used in
the expansion (2.5) may be violated.

However , the following improvement can be made; the ARIMA model (2.9) can be
linearized about each new estimate as estimates become available in time. At time ¢t

Processing 2z we can

(after zy has become available) we linearize around 8 4

tft”

update the parameter vector, derive and use this estimate for the next

B
“tel]t4l
! linearization. This procedure uses a better estimate for the trajectory as soon as

one becomes available, and large errors about the trajectory due to bad a priori

estimates are not allowed to propagate.

-10-
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It follows from the recursive linearization of the ARIMA model that

A
’ (af)y 0 (2.10)

telt

and

( lA - - 3
a8} LL‘]IY'I o vt (2-11)

t_ol‘t'l

Using the Kalman filter equations for the linearized system (2.9), the updating equa-

tions are therefore given hy:

ﬁtol‘t E ”"(_lt £ (2.12a)
i T A (2.12b)
tel]t t]t
4 g o e e (=) e
Ltlt Lt[t-x + KL_J(/.t f‘“t[r—l" ) 1) Y (2.12¢)
z (=)
P P - K __ h'(B iz ‘ ; i 4
t|t t]t-1 et ‘!t,t_l @ 1Py L= (2.12d)
4 (t=1) - (t-1) 4 (=2 s =]
P h' (£ 'z (B ,Z > g .z 3 198
“e-) tfe-1" (('tlL-]_ £ )[1+h U,tlt_l ‘ “t.!t-lh“th—l z ) (2.12¢)

In the engineering literature the general procedure of recursively linearizing non-
linear models is known under the name Extended Kalman Filtering. See Jazwinski [3]

for further reference.

§2.5: Example: Recursive parameter estimation for the first order moving average
»
process with constant parameter
(1) The first order moving average process (for y 0) is given by
p = a_ -0 ® 2
z, a, a,_, (2.13)
It is, for example, shown by Ljung and Box [6] that the ML estimate of 6 for the
first order moving average model is obtained by minimizing
L
n 241"
L(B) = {X 0 J} 5(8) (2.14)
=0
where
n
~2
5(0) = y at(ﬂ) '
t=0
n =5 0 n+l-i
. A 23 i 2(n-j) ‘
a0 = -| § % EOl‘Xﬂ(jli
j=0 i=1 j=1
-11-
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and
p * oz 4oy ¢ , =
dt(')) It 1r—l(') (1 t n)

(i1) To derive parameter estimates recursively we use the theory outlined above. For

the case of a first order moving average process with constant parameter 9, egqua~=

tions (2.12) simplify to (for notational convenience we write ")t ] ")'I'- and l' l'!')
] e
y g l‘t 1"(01 l:Z( l)) 1 P
H =9 DL S — ) ) ; (2.15;
g T Ve T e e (2, % O gBe-q "0 i!] %
t-1 " t-1'%
2 (t-1) 2
TR p B 2.15b
B el LI E ) 1) (2.15b)
where
= (t-1) 2
h (€ 12 =
]()t—l z ) wt(()t_l)
which according to (2.7) can be updated by
0 = 6 w 5 - 6 2.16
wtmt—l) Ot—l t_lmt_z) at—l(gt—l) (2.16)

and

-12~
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20\  ABSTRACT (Cont'd.)
\Y

In the firct section the linear regression model is considered and
recursive estimates of the parameters, both for constant and time varying
parameters, are discussed. Since the stochastic model for the parameters
over time will be rarely known, simplifying assumptions have to be made.

In particular a random walk as amodel for time varying parameters is assumed
and it is shown how one can determine whether the parameters are constant
or changing over time.

In the second section the recursive estimation of parameters in ARIMA
models is considered. If moving average terms are present, the model has to
be linearized and the Extended Kalman Filter can be used to recursively
update the parameter estimates. The first order moving average model is

discussed in detail. .
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